NATURAL GAS VEHICLES - 2016

Colorado Association of School District Energy Managers Thompson School District 800 S. Taft Avenue

Loveland, CO November 3, 2016

BHE Natural Gas Service Areas

Today's Discussion

- NGV Industry Related Definitions
- Fast Facts About Natural Gas Vehicles
- Common Industry Measurements
- Common Industry Standards
- Why Nat. Gas as a Transportation Fuel
- What Benefits Do NGVs Offer
- Energy Forecasts
- Today's Challenges
- Where Can You Fill Up
- Fuel Analysis
- CNG - Compressed Natural Gas
- LNG - Liquefied Natural Gas (-260 degrees)
- NGV - Natural Gas Vehicle
- GGE - Gasoline Gallon Equivalent
- DGE - Diesel Gallon Equivalent
- Slow Fill - Compressor directly fills NGV tank over time
- Fast Fill - High pressure storage fills NGV tank
- Dedicated = CNG powered only
- Bi-Fuel = Traditional Fuel or CNG (one fuel or the other)
- Dual-Fuel = Diesel Fuel \& CNG (blended fuel stream)
- Repower = Replacing Diesel Fueled Engine w/ CNG Fueled Engine
- Conversion = Added after market CNG kit
- OEM = Factory Built NGV (Ford, GM, Dodge, Freightliner, Kenworth)

1. $\sim 153,000$ NGVs on U.S. Roads
2. $\boldsymbol{\sim} 15.2$ million worldwide
3. ~ 1,564 CNG fueling stations in the U.S.
4. 50 manufacturers producing 100 NGV vehicle models
5. CNG retail prices range from $\mathbf{\$ 0 . 9 9}$ to $\mathbf{\$ 2 . 3 5}$ per GGE
6. U.S. NGVs use about 500 million gallons of CNG Annually
7. NGVs meet the strictest emission standards, including CA's AT-PZEV standards (Advanced Technology-Partial Zero Emissions Vehicle)
8. NGVs are as safe or safer than traditional gasoline or diesel vehicles

Common Industry Measurements

1 cubic foot (cf) $=1,000 \mathrm{Btu}$
100 cubic feet (1 ccf) $=1$ therm (approximate)
1,000 cubic feet (1 Mcf) $=1,000,000 \mathrm{Btu}(1 \mathrm{MMBtu})$
1,000 cubic feet (1 Mcf) = 1 dekatherm (10 therms)
1 million ($1,000,000$) cubic feet (1 Mmcf) $=1,000,000,000 \mathrm{Btu}$
1 billion (1,000,000,000 cubic feet (1 bcf) $=1$ trillion Btu
1 trillion (1,000,000,000,000) cubic feet $(1 \mathrm{Tcf})=1$ quadrillion Btu So

1ccf = Therm
1Mcf = Dekatherm
1Tcf = Quad

Common NGV Industry Standards

1. 1 GGE $=126.67$ Standard Cubic Feet of Nat. Gas (scf)
2. 1 GGE $=\mathbf{5 . 6 6} \mathrm{lbs}$ of Nat. Gas @ 70 degrees
3. 1 GGE $=\mathbf{\sim} \mathbf{1 2 5 , 0 0 0} \mathbf{b t u}$
4. 1 DGE $=139.20$ scf
5. 1 DGE $=6.39$ lbs
6. 1 DGE $=\mathbf{\sim} \mathbf{1 4 0 , 0 0 0}$ btu
7. GGE/DGE Per Hour - rating for time-fill system
8. GGE/DGE Per Minute - rating for fast-fill system
9. $\mathbf{3 6 0 0}$ psi = complete tank fill for NGV @ 70 degrees

Why Natural Gas as a Transportation Fuel?

- Burns Cleaner than Gasoline or Diesel Fuel
- Safer than Gasoline or Diesel Fuel
- Delivers Same Fuel Mileage \& Performance
- Natural Gas Requires Considerably Less Refining
- Pump Price for Natural Gas Projected to Stay in the \$2.00/GGE Range VS Gasoline \& Diesel Fuel are Projected to Return to $\mathbf{\$ 3 . 5 0}$ to $\mathbf{\$ 4 . 0 0 / g a l l o n}$
- Mature Technology for Vehicles \& Fueling Infrastructure

What Benefits Do NGVs Offer?

- Significantly Lower Tail Pipe Emissions
- Reduction in Maintenance Costs \& Extends Engine Life
- Fuel Cost Savings
- Uses a Domestically Produced Energy (reduces dependence on crude oil imports)
- Supply Chain Taxes \& Profits Stay Within the U.S.

Energy Forecasts

Energy Prices

Case: Reference case | Region: United States
2013 \$/MMBtu

1012	1	1	1	2020	2020	2020

- Residential: Natural Gas - Transportation: Diesel Fuel - Transportation: Natural Gas - Transportation: Motor Gasoline - Transportation: Propane

C1̇ Source: U.S. Energy Information Administration

Today's Challenges

- Not Enough CNG Fueling Stations
- Not Enough Natural Gas Fueled Vehicles
- Lack of Education \& Knowledge @ NGV Industry
- High Entry Cost for Fleet Conversions
- High Entry Cost for Construction of New CNG Fueling Infrastructure
- More Financial Incentives Needed To Spur Industry.

Where Can You Fill Up?

http://www.afdc.energy.gov/locator/stations/

CNG Stations Served By BHE

What's Next?

Typical School Bus Fuel Analysis

Improvinglife withenerg:

Vehicle Conversion Details

Description	Class C School Bus
Number of Vehicles	1
Fuel Type	Diesel
Average MPG	7
Yearly Miles Driven	15,000
Cost per Conversion	$\$ 35,000$
Fuel Gallons / Vehicle	2,143

Annual Fuel Gallons / Vehicle
 2,143

Fuel Assumptions

Average Fuel Price	Gasoline			Estimated diesel and gas costs per gallon over project life, displaced fuels.
	\$2.75	\$	2.35	
Building Station Public Station				
Average GGE of CNG	\$2.50	\$	2.15	Estimated CNG cost over project life

Typical School Bus Fuel Analysis

Improvinglife widhenergy Black Hills Energy proudly presents financial and fuel analysis for :

Date: 11/3/2016 Prep	Prepared For: Craig Wright				
Project Description					
Project Summary	Year 1	Year 5	Year 10 Year 15		
Current Cumulative Fuel Cost	\$5,893	\$29,464	\$58,929	\$ 88,393	
Estimated Fuel Cost Savings	\$3,650	\$18,249	\$36,499	\$ 54,748	
Fleet Conversion Investment	\$35,000				
CNG Station Investment	\$0				
RAQC Incentives \$	26,000				
Estimated Payback Time	1.81 Years				
Note: This financial analysis and proposed incentives are based on current prices and economic conditions.					
Vehicle Conversion Financial Summary					
Total Investment CNG Equipped: Avg. Annual Net Fuel Savings For full fleet conversion	(\$35,000)		Maintenance Facility Investment		\$0
	\$3,650		BHE Incentives or Rebates		\$26,000
Vehicle Investment by Year	Year	Year	Year	Year	Year
	1	2	3	4	5
	(\$35,000)	\$0	\$0	\$0	\$0
CNG Fill Station Financial Summary					
Capital Investment				Year 1 O\&M Costs	(723)
Avg Annual Station Throughput (GGE)	2.4			Payback	1.81 Years

Inflation factors have differing long term effects on cost of ng vs petroleum based fuels. Spreads widen resulting in better/improved financials for

