

NATURAL GAS VEHICLES – 2016

Colorado Association of School District Energy Managers Thompson School District 800 S. Taft Avenue Loveland, CO November 3, 2016

BHE Natural Gas Service Areas

Today's Discussion

- NGV Industry Related Definitions
- Fast Facts About Natural Gas Vehicles
- Common Industry Measurements
- Common Industry Standards
- Why Nat. Gas as a Transportation Fuel
- What Benefits Do NGVs Offer
- Energy Forecasts
- Today's Challenges
- Where Can You Fill Up
- Fuel Analysis

NGV Definitions

- CNG Compressed Natural Gas
- LNG Liquefied Natural Gas (-260 degrees)
- NGV Natural Gas Vehicle
- GGE Gasoline Gallon Equivalent
- DGE Diesel Gallon Equivalent
- Slow Fill Compressor directly fills NGV tank over time
- Fast Fill High pressure storage fills NGV tank
- Dedicated = CNG powered only
- Bi-Fuel = Traditional Fuel or CNG (one fuel or the other)
- Dual-Fuel = Diesel Fuel & CNG (blended fuel stream)
- Repower = Replacing Diesel Fueled Engine w/ CNG Fueled Engine
- Conversion = Added after market CNG kit
- OEM = Factory Built NGV (Ford, GM, Dodge, Freightliner, Kenworth)

Fast Facts About "Natural Gas Vehicles"?

- 1. ~ 153,000 NGVs on U.S. Roads
- 2. ~ 15.2 million worldwide
- 3. ~ 1,564 CNG fueling stations in the U.S.
- 4. 50 manufacturers producing 100 NGV vehicle models
- 5. CNG retail prices range from \$0.99 to \$2.35 per GGE
- 6. U.S. NGVs use about 500 million gallons of CNG Annually
- 7. NGVs meet the strictest emission standards, including CA's AT-PZEV standards (Advanced Technology-Partial Zero Emissions Vehicle)
- 8. NGVs are as safe or safer than traditional gasoline or diesel vehicles

Common Industry Measurements

sourced from NGVSolutions

1 cubic foot (cf) = 1,000 Btu 100 cubic feet (1 ccf) = 1 therm (approximate) 1,000 cubic feet (1 Mcf) = 1,000,000 Btu (1 MMBtu) 1,000 cubic feet (1 Mcf) = 1 dekatherm (10 therms) 1 million (1,000,000) cubic feet (1 Mmcf) = 1,000,000,000 Btu 1 billion (1,000,000,000 cubic feet (1 bcf) = 1 trillion Btu 1 trillion (1,000,000,000,000) cubic feet (1Tcf) = 1 quadrillion Btu So 1ccf = Therm 1Mcf = Dekatherm 1Tcf = Quad

Common NGV Industry Standards

- 1. 1 GGE = 126.67 Standard Cubic Feet of Nat. Gas (scf)
- 2. 1 GGE = 5.66 lbs of Nat. Gas @ 70 degrees
- 3. 1 GGE = ~ 125,000 btu
- 4. 1 DGE = 139.20 scf
- 5. 1 DGE = 6.39 lbs
- 6. 1 DGE = ~ 140,000 btu
- 7. GGE/DGE Per Hour rating for time-fill system
- 8. GGE/DGE Per Minute rating for fast-fill system
- 9. 3600 psi = complete tank fill for NGV @ 70 degrees

Why Natural Gas as a Transportation Fuel?

- Burns Cleaner than Gasoline or Diesel Fuel
- Safer than Gasoline or Diesel Fuel
- Delivers Same Fuel Mileage & Performance
- Natural Gas Requires Considerably Less Refining
- Pump Price for Natural Gas Projected to Stay in the \$2.00/GGE Range VS Gasoline & Diesel Fuel are Projected to Return to \$3.50 to \$4.00/gallon
- Mature Technology for Vehicles & Fueling
 Infrastructure

What Benefits Do NGVs Offer?

- Significantly Lower Tail Pipe Emissions
- Reduction in Maintenance Costs & Extends Engine Life
- Fuel Cost Savings
- Uses a Domestically Produced Energy (reduces dependence on crude oil imports)
- Supply Chain Taxes & Profits Stay Within the U.S.

Energy Forecasts

Today's Challenges

- Not Enough CNG Fueling Stations
- Not Enough Natural Gas Fueled Vehicles
- Lack of Education & Knowledge @ NGV Industry
- High Entry Cost for Fleet Conversions
- High Entry Cost for Construction of New CNG Fueling Infrastructure
- More Financial Incentives Needed To Spur Industry.

Where Can You Fill Up?

http://www.afdc.energy.gov/locator/stations/

CNG Stations Served By BHE

What's Next?

Typical School Bus Fuel Analysis

Vehicle Conversion Details			
Description	Class C School Bus		
Number of Vehicles	1		
Fuel Type	Diesel		
Average MPG	7		
Yearly Miles Driven	15,000		
Cost per Conversion	\$35,000		
Annual Fuel Gallons / Vehicle	2,143		
Fuel Assumptions			
	Diesel	Gasoline	
Average Fuel Price	\$2.75	\$ 2.35	Estimated diesel and gas costs per gallon over project life, displaced fuels.
	Building Station	Public Station	
Average GGE of CNG	\$2.50	\$ 2.15	Estimated CNG cost over project life

Typical School Bus Fuel Analysis

Black Hills Energy proudly presents financial and fuel analysis for :					CASDEM Audience				1 85	a/
Date:	11/3/2016	Prepared For:	Craig W	right						
Project D	escription									
Project Summary		Year 1	Year	5	Year 10		Year 15			
Current C	umulative Fuel Cost	\$5	5,893 \$2	9,464	\$58,929	\$	88,393			
Estimated Fuel Cost Savings		\$3	,650 \$18	3,249	\$36,499	\$	54,748			
Fleet Conversion Investment		t \$35	,000							
CN	G Station Investment	t	\$0							
	RAQC Incentives	\$ 26	,000				~			
Estimated Payback Time			1.81 Years							
Note: Thi	is financial analysis	and proposed in	centives are ba	ased on	current prices	and	economic condi	tions.		
Veh	nicle Conversion Fir	ancial Summary	·-···				·····	•		
Total Investment CNG Equipped:		pped:	(\$35.000)		Maintenance Facility Investment			\$0		
Avg. Annual Net Fuel Savings For full fleet conversion		vings	\$3,650		BHE Incentives or Rebates			\$26,000		
Vehicle Investment by Year		ar Yea	ir 🤺	Year	Year		Year	Year		
		1		2	3		4	5		
-		(\$35,0	00)	\$0	\$0		\$0	\$0		
CNO	G Fill Station Financ	ial Summary								
Capital Investment		tment	\$0		Year 1 O&M Costs			(723)		
vg Annual Station Throughput (GGE)		GGE)	2,443				Payback	1.81 Years		
	5 Yea	IRR	39.5%							

Inflation factors have differing long term effects on cost of ng vs petroleum based fuels. Spreads widen resulting in better/improved financials for